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Abstract Quantitative structure-toxicity relationship
(QSTR) studies have proved to be a valuable approach in
research on the toxicity of organic chemicals for ranking
chemical substances with respect to their potential haz-
ardous effects on living systems. With this background,
we have modeled here the acute lethal toxicity of 51
benzene derivatives with recently introduced extended
topochemical atom (ETA) indices [Roy and Ghosh, In-
ternet Electron J Mol Des 2:599–620 (2003)]. We also
compared the ETA relations with non-ETA models
derived from different topological indices (Wiener W,
Balaban J, flexibility index /, Hosoya Z, Zagreb,
molecular connectivity indices, E-state indices and
kappa shape indices) and physicochemical parameters
(AlogP98, MolRef,H_bond_donor and H_bond_accep-
tor). Genetic function approximation (GFA) and factor
analysis (FA) were used as the data-preprocessing steps
for the development of final multiple linear regression
(MLR) equations. Principal-component regression
analysis (PCRA) was also used to extract the total
information from the ETA/non-ETA/combined matri-
ces. All the models developed were cross-validated using
leave-one-out (LOO) and leave-many-out techniques.
The summary of the statistics of the best models is as
follows: (1) FA-MLR: ETA model- Q2 (LOO)=0.852,
R2=0.894; non-ETA model- Q2=0.782, R2=0.835;
ETA + non-ETA model-Q2 =0.815, R2=0.859. (2)
GFA-MLR: ETA model-Q2 =0.847, R2=0.915; non-
ETA model-Q2= 0.863, R2=0.898; ETA + non-ETA
model-Q2=0.859, R2=0.893. 3. PCRA: ETA model-
Q2=0.864, R2= 0.901; non-ETA model- Q2=0.866,
R2= 0.922; ETA + non-ETA model-Q2=0.846,
R2=0.890. The statistical quality of the ETA models is
comparable to that of non-ETA models. Again, use of
non-ETA descriptors in addition to ETA descriptors
does not increase the statistical acceptance of the rela-

tions significantly. The predictive potential of these
models was better than that of the previously reported
models using physicochemical parameters [Huang et al.,
Chemosphere 53:963–970 (2003)]. The relations from
ETA descriptors suggest a parabolic dependence of the
toxicity on molecular size. Furthermore, the toxicity in-
creases with functionality contribution of chloro sub-
stituent and decreases with those of methoxy, hydroxy,
carboxy and amino groups. This study suggests that ETA
parameters are sufficiently rich in chemical information
to encode the structural features that contribute signifi-
cantly to the acute toxicity of benzene derivatives toRana
japonica.

Keywords QSTR Æ QSAR Æ ETA Æ TAU Æ VEM Æ
Factor analysis Æ Genetic function approximation

Introduction

The effect of hazardous chemicals and pollutants on the
ecosystem is a matter of great concern considering the
fact that although large number of chemical compounds
(in 10s of 1000s) are in commercial use, relatively few of
these have been subjected to adequate assessment for
their hazardous environmental properties. Accumulat-
ing evidence suggests that humans and domestic and
wildlife species have suffered adverse health conse-
quences from exposure to environmental chemicals [1].
Animal testing is still considered essential to the support
of risk assessment, but is often too costly and time
consuming to be applied to the full range of chemicals
for which some level of toxicological screening is nec-
essary and desired [2]. Currently, there are ecotoxico-
logical data available for <1% of compounds. Thus, the
European Union Commission’s Scientific committee on
toxicity, ecotoxicity, and environment (CSTEE) has
recommended the use of (Q)SAR models and precau-
tions to prioritize further risk assessment of approxi-
mately 4,500 compounds and their adjuvants [2]. Faced
with the task of screening a large number of chemicals,
for an increasing array of toxicity endpoints, using
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limited resources, quantitative structure-activity rela-
tionships (QSARs) have been used in many diverse
problem settings as a complement to experimental data
[2]. QSARs have emerged as an indispensible tool for
predicting the ecotoxicological hazard of new chemicals.
The regulatory agencies must rely on QSAR techniques,
as these can predict potential ecotoxicological hazards
rapidly at minimum cost [3]. The US Environmental
Protection Agency (EPA) designed assessment tools for
evaluation of risk (ASTER), which is an integration of
AQUIRE (database of aquatic toxicity) and QSAR
(database of physicochemical properties and QSAR
models) to assist regulators in producing assessments [4].
Apart from prediction of ecological and human health
effects, QSARs are being used to help industry design
safer chemicals for commercial use [5]. QSARs have also
been used in exploring the mechanisms of toxic actions
of chemicals [6]. Different QSAR models, descriptors
and statistical methods have been used to model toxicity
data of diverse chemicals by different groups of workers.
A paper on E-state modeling of fish toxicity independent
of 3D structure information was published by Rose and
Hall [7]. In this paper, the authors showed the utility of
the E-state index in toxicity modeling with direct phys-
icochemical significance. Mazzatorta et al. [8] have
modeled the toxicity of 562 organic chemicals using
neural and fuzzy-neural networks. Principal component
analysis was used as a classification tool for the toxicity
data of dangerous chemicals by Vighi et al. [9]. Bask
et al. [10] have used H-QSAR for predicting the toxicity
of chemicals. Devillers [11] has derived a general model
for predicting acute toxicity of pesticides.

Quantitative structure-toxicity relationship (QSTR)
studies, having proved to be a valuable approach in re-
search on the toxicity of organic chemicals for ranking
the chemical substances with respect to their potential
hazardous effects on living systems, there is an urgent
need to develop newer descriptors to encode molecular
features and chemical information from different
dimensions. With this background, we have recently
introduced [12–16] extended topochemical atom (ETA)
indices as an extension of the TAU concept in the va-
lence electron mobile (VEM) environment [17–26], and
modeled different toxicity data (phenol toxicity [12], fish
toxicity [13], and nitrobenzene toxicity [14]) to establish
the utility of ETA indices in modeling studies. Very re-
cently, we reported modeling of the acute toxicity of 56
phenylsulfonyl carboxylates to Vibrio fischeri using fac-
tor analysis and principal-component regression analysis
[15] and also using genetic function approximation
(GFA) [16]. In our present work, we have modeled acute
toxicity of 51 benzene derivatives to tadpoles (Rana
joponica) with ETA indices using GFA and factor
analysis as the data preprocessing steps for the devel-
opment of final multiple linear regression (MLR)
equations. The best model with ETA indices was com-
pared with non-ETA models derived from different
topological and selected physicochemical indices and
also with models reported previously [27].

Materials and methods

Definitions of some of the basic parameters used in the
ETA scheme are given below.

The core count of a non-hydrogen vertex [a] is de-
fined as [12]:

a ¼ Z � Zv

Zv

1

PN� 1
: ð1Þ

In Eq. 1, Z and Zv represent atomic number and valence
electron number respectively, while PN denotes period
number. The hydrogen atom being considered as the
reference, a for hydrogen is taken to be zero. Again,
another term e (a measure of electronegativity) is defined
[12] in the following manner:

e ¼ �aþ 0:3ZV: ð2Þ

It is interesting to note that a values of different atoms
commonly found in organic compounds have a high
correlation (r=0.946) [12] with (uncorrected) van der
Waals volume while e correlates well (r=0.937) with
Pauling’s electronegativity scale [12].

The VEM count b of the ETA scheme is defined as

b ¼
X

xrþ
X

ypþ d: ð3Þ

In the above equation, d is a correction factor of value
0.5 per atom with a lone pair of electrons capable of
resonance with an aromatic ring (e.g., nitrogen of ani-
line, oxygen of phenol, etc.). For calculation of the VEM
count, the contribution (x) of a sigma bond (r) between
two atoms of similar electronegativity (De £ 0.3) is
considered to be 0.5, and for a sigma bond (r) between
two atoms of different electronegativity (De>0.3), it is
considered to be 0.75. Again, in the case of p-bonds (p),
contributions (y) are considered depending on the type
of double bond: (1) for p-bond between two atoms of
similar electronegativity (De £ 0.3), y is taken to be 1; (2)
for p-bond between two atoms of different electronega-
tivity (De>0.3) or for conjugated (non-aromatic) p-system,
y is considered to be 1.5; (3) for aromatic pi system, y is
taken as 2.

The VEM vertex count ciof the ith vertex in a
molecular graph is defined as

ci ¼
ai

bi
: ð4Þ

In the above equation, ai stands for the a value for the
ith vertex and bi stands for VEM count considering all
bonds connected to the atom i and its lone pair of
electrons (if any).

Finally, the composite index g is defined in the fol-
lowing manner:

g ¼
X

i\j

cicj

r2ij

" #0:5
: ð5Þ
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In Eq. 5, rij stands for the topological distance between
the ith and jth atoms. Again, when all heteroatoms and
multiple bonds in the molecular graph are replaced by
carbon and single bonds, respectively, the corresponding
molecular graph may be considered as the reference al-
kane and the corresponding composite index value is
designated gR. Considering functionality as the presence
of heteroatoms (atoms other than carbon or hydrogen)
and multiple bonds, the functionality index gF may be
calculated as gR�g. To avoid dependence of function-
ality on vertex count or bulk, we have defined [12] an-
other term g¢F as gF/ NV, NV being the count of non-
hydrogen vertices. Again, one can determine the con-
tribution of a particular position, vertex or substructure
to functionality in the following manner:

½g�i ¼
X

j 6¼i

cicj

r2ij

" #0:5
: ð6Þ

In Eq. 6, [g]i stands for the contribution of the ith
vertex to g. Similarly, the contribution of the ith vertex
[gR]i to gR can be computed. Contribution of the ith
vertex [gF]i to functionality may be defined as [gR]i�[g]i.
To avoid dependence of this value on NV, a related term
[g¢F]i was defined [12] as [gF]i/ NV.

Again, considering only bonded interactions (rij=1),
the corresponding composite index is written as glocal.

glocal ¼
X

i\j;rij¼1
ðcicjÞ0:5 ð7Þ

In a similar way, gR
local for the corresponding reference

alkane may also be calculated. The local functionality
contribution (without considering global topology), gF

lo-

F
local, may be calculated as gR

local �glocal .
The branching index gB can be calculated as gN

local�
gR
local+0.086 NR, where NR stands for the number of
rings in the molecular graph of the reference alkane. The
NR term in the branching index expression represents a
correction factor for cyclicity. gN

local indicates the g value
of the corresponding normal alkane (straight chain
compound of same vertex count obtained from the ref-
erence alkane), which may be conveniently calculated as
(when NV‡3):

glocalN ¼ 1:414þ ðNV � 3Þ0:5 ð8Þ

To calculate the branching contribution relative to the
molecular size, another term g¢B has been defined as gB/
NV.

In the present communication, the utility of ETA
parameters is demonstrated through a QSTR study
taking acute toxicity of benzene derivatives to the tad-
pole (R. japonica) [27] as the model dataset (Table 1).
Definitions of important ETA parameters are given in
Table 2. GFA [28, 29] and factor analysis (FA) [30, 31]
were performed as the data preprocessing step for
identifying important descriptors for the final multiple
regression analysis.

The GFA technique [28, 29] was used to generate a
population of equations rather than one single equation
for correlation between the toxicity and descriptors.
GFA involves the combination of the multivariate
adaptive regression splines (MARS) algorithm with a
genetic algorithm to evolve a population of equations
that best fit the training set data. It provides an error
measure, called the lack of fit (LOF) score that auto-
matically penalizes models with too many features. This
is done as follows: (1) an initial population of equations
is generated by random choice of descriptors; (2) pairs
from the population of equations are chosen at random
and ‘‘crossovers’’ are performed and progeny equations
are generated; (3) it is better at discovering combinations
of features that take advantage of correlations between
multiple features; (4) the fitness of each progeny equa-
tion is assessed by the lack-of-fit (LOF) measure; (5) it
can use a larger variety of equation term types in con-
struction of its models; (6) the fitness of a new progeny
equation is preserved if it is better. The models with
proper balance of all statistical terms are used to explain
variance in the biological activity. A distinctive feature
of GFA is that it produces a population of models (e.g.,
100) instead of generating a single model, as do most
other statistical methods. The range of variations in this
population gives added information on the quality of fit
and importance of the descriptors. The GFA study was
done using the GFA module in the QSAR+ environ-
ment of the Cerius2 software [32]. Apart from the
number of crossovers (10,000), all other default settings
were used for the analysis (linear terms, smoothness
factor=1, mutation probability for adding new term=
50%).

For the purpose of factor analysis, the data matrix
consisting of the ETA/non-ETA/combined descriptors
was subjected to principal-component factor analysis
using the SPSS software [33]. The principal objectives of
factor analysis are to display multidimensional data in a
space of lower dimensionality with minimal loss of
information and to extract basic features behind the
data with the ultimate goal of interpretation and/or
prediction. The factors were extracted by the principal-
component method and then rotated by VARIMAX
rotation to obtain Thurston’s simple structure. Only
variables with non-zero loadings in such factors where
biological activity also has non-zero loading were con-
sidered important in explaining variance of the activity.
Further, variables with non-zero loadings in different
factors were combined in regression equations. An at-
tempt was also made to perform PCRA [31] taking
factor scores as predictor variables. In this case, the
principal components serve as latent variables. PCRA
has the advantage that colinearities among X variables
are not a disturbing factor and that the number of
variables included in the analysis may exceed the num-
ber of observations [31]. In PCRA, all descriptors are
assumed to be important while the aim of factor analysis
is to identify relevant descriptors.
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The calculations of g, gF, gB and contributions of
different vertices to gF were performed, using the distance
matrix and VEM vertex counts as inputs by the GW-
BASIC programs KRETA1 and KRETA2 developed by
one of the authors [34]. We have also modeled the toxicity
data using other selected topological variables and com-
pared the ETA models with non-ETA ones. The values
for the non-ETA topological descriptors for the com-
pounds were generated by the QSAR+andDescriptor+

modules of the Cerius 2 Version 4.8 software [32]. The
various topological indices calculated are Wiener W,
Balaban J, flexibility index (/), Hosoya Z, Zagreb, con-
nectivity indices ð0v;1 v;2 v;3 vp;

3 vc;
3 vCH;

0 vv;1 vv;2 vv;
3vvp;

3 vvc ;
3 vvCHÞ; kappa shape indices ð1j;2 j;3 j;1 ja;

2 ja;
3jaÞ and E-state parameters (S_sCH3, S_ssCH2, S_aaCH,
S_dssC, S_aasC, S_aaaC, S_sNH2, S_ddsN, S_sOH,
S_dO, S_ssO, S_sCl, S_sBr). Alongwith the topological

Table 1 Observed, calculated and predicted toxicity of benzene derivatives to the tadpole (R. japonica)

S. no. Compound Obsa Calb Predb

from
LOO

Predb

from
L-20%-O

Calc Predc

from
LOO

Predc

from
L-20%-O

Cald Predd

from
LOO

Predd

from
L-20%-O

1 1,2,3-Trichlorobenzene 4.431 4.334 4.311 4.328 4.317 4.291 4.326 4.291 4.267 4.288
2 1,2,4-Trichlorobenzene 4.500 4.330 4.292 4.273 4.303 4.258 4.226 4.265 4.227 4.201
3 1-Bromo-2,3-dichlorobenzene 4.560 4.474 4.465 4.473 4.583 4.588 4.580 4.469 4.448 4.498
4 1-Bromo-2,6-dichlorobenzene 4.481 4.468 4.467 4.470 4.584 4.605 4.596 4.471 4.469 4.459
5 m-Dichlorobenzene 3.679 3.853 3.873 3.903 3.785 3.794 3.803 3.729 3.733 3.764
6 p-Dichlorobenzene 3.850 3.850 3.850 3.826 3.781 3.774 3.772 3.721 3.712 3.710
7 o-Dichlorobenzene 3.790 3.856 3.864 3.804 3.795 3.795 3.728 3.747 3.744 3.687
8 Chlorobenzene 3.195 3.229 3.237 3.253 3.259 3.264 3.276 3.169 3.167 3.143
9 Phenol 2.769 2.478 2.407 2.490 2.795 2.800 2.846 2.649 2.635 2.718
10 2-Chlorophemol 3.011 3.197 3.212 3.232 3.326 3.350 3.341 3.227 3.237 3.259
11 4-Bromophenol 3.664 3.544 3.536 3.532 3.580 3.570 3.517 3.382 3.314 3.309
12 4-Chlorophenol 3.421 3.204 3.187 3.145 3.315 3.306 3.261 3.201 3.191 3.152
13 4-Fluorophenol 2.693 2.759 2.767 2.773 2.820 2.844 2.849 2.629 2.621 2.576
14 2-Methoxyphenol 2.654 2.621 2.586 2.588 2.508 2.372 2.385 2.471 2.300 2.319
15 2-Methylphenol 2.837 2.941 2.950 2.963 3.019 3.032 3.041 3.126 3.141 3.158
16 4-Methoxyphenol 2.624 2.658 2.689 2.687 2.764 2.919 2.916 2.799 2.994 2.999
17 4-Methylphenol 3.057 2.949 2.940 2.910 3.010 3.007 2.964 3.100 3.102 3.052
18 4- tert-Butylphenol 4.033 3.925 3.916 3.922 3.886 3.870 3.865 4.223 4.244 4.254
19 2,6-Dimethylphenol 3.324 3.333 3.334 3.341 3.339 3.340 3.395 3.569 3.579 3.602
20 1-Naphthalenol 3.807 3.903 3.911 3.909 3.684 3.675 3.709 3.948 3.956 3.947
21 2-Naphthalenol 3.886 3.914 3.916 3.913 3.667 3.653 3.648 3.904 3.905 3.906
22 2,4-Dichlorophenol 3.873 3.771 3.753 3.707 3.725 3.707 3.646 3.745 3.738 3.691
23 2-Bromo-4-methylphenol 3.717 3.820 3.829 3.817 3.791 3.806 3.752 3.827 3.847 3.822
24 Resorcinol 2.066 2.490 2.612 2.540 2.643 2.747 2.729 2.690 2.760 2.757
25 Diphenylol propane 4.201 4.028 3.767 3.682 4.196 4.191 4.128 4.123 4.060 3.993
26 Diphenylol ethane 3.914 4.167 4.284 4.300 3.952 3.971 4.015 3.881 3.864 3.914
27 2,4-Dichloroaniline 3.732 3.360 3.134 3.147 3.502 3.479 3.486 3.641 3.637 3.588
28 4-Chloro-benzoic acid 3.417 3.246 3.167 3.201 3.442 3.443 3.435 3.394 3.393 3.380
29 4-Bromo-benzoic acid 3.625 3.680 3.697 3.681 3.705 3.713 3.749 3.575 3.564 3.596
30 Salicylic acid 2.840 2.749 2.714 2.728 2.896 2.903 2.889 2.934 2.942 2.940
31 5-Chloro-salicylic acid 3.011 3.224 3.321 3.326 3.365 3.416 3.411 3.367 3.384 3.365
32 4-Hydroxybenzaldehyde 3.080 3.212 3.219 3.183 2.871 2.845 2.811 2.874 2.854 2.842
33 Nitrobenzene 3.286 3.413 3.433 3.439 3.262 3.260 3.274 3.215 3.212 3.183
34 2-NitroToluene 3.530 3.759 3.782 3.731 3.544 3.545 3.560 3.588 3.590 3.608
35 4-NitroToluene 3.624 3.759 3.773 3.792 3.533 3.527 3.560 3.551 3.549 3.568
36 2-Nitrophenol 3.502 3.355 3.347 3.342 3.339 3.328 3.354 3.413 3.409 3.428
37 3-Nitrophenol 3.510 3.371 3.364 3.347 3.274 3.260 3.232 3.307 3.297 3.275
38 4-Nitrophenol 3.657 3.382 3.369 3.386 3.236 3.212 3.212 3.241 3.219 3.208
39 1-Chloro-4-nitrobenzene 3.934 3.971 3.973 3.962 3.770 3.762 3.775 3.709 3.703 3.722
40 1-Bromomethyl-4-nitrobenzene 4.383 4.348 4.345 4.321 4.576 4.632 4.645 4.621 4.670 4.666
41 1-Chloromethyl-4-nitrobenzene 4.321 4.182 4.173 4.161 4.165 4.157 4.161 4.213 4.206 4.234
42 4-Chloro-2-nitrophenol 3.882 3.862 3.860 3.831 3.850 3.847 3.799 3.908 3.909 3.875
43 2-Nitroresorcinal 3.492 3.568 3.573 3.567 3.400 3.378 3.325 3.577 3.582 3.556
44 2-Chloro-5-nitroaniline 3.466 3.871 4.172 4.134 3.894 3.919 3.889 3.805 3.815 3.812
45 4-Nitro-naphthalen-1-ylamine 4.236 4.185 4.162 4.059 4.140 4.116 4.134 4.058 4.039 4.008
46 o-Dinitrobenzene 4.050 4.066 4.067 4.037 4.160 4.181 4.188 4.241 4.279 4.303
47 m-Dinitrobenzene 4.015 4.066 4.071 4.080 3.979 3.974 3.969 3.948 3.940 3.934
48 2,4-DinitroToluene 4.061 4.267 4.288 4.278 4.192 4.211 4.198 4.163 4.176 4.163
49 2,4-Dinitrophenol 4.306 3.941 3.903 3.943 4.060 3.994 4.023 4.097 4.051 4.055
50 2,4-Dinitrobromobenzene 4.461 4.451 4.449 4.371 4.700 4.750 4.754 4.552 4.580 4.582
51 2,4-Dinitrochlorobenzene 4.342 4.418 4.423 4.420 4.516 4.553 4.573 4.450 4.470 4.519

aObs observed [27], Cal calculated, Pred predicted
bFrom Eq. 9; c From Eq. 12; d From Eq. 15
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descriptors, a few physicochemical descriptors like
AlogP98, MolRef,H_bond_donor and H_bond_acceptor
were also considered among non-ETA descriptors.

The statistical quality of the equations [35] was
judged by the parameters like explained variance (Ra

2,
i.e., adjusted R2), correlation coefficient (r or R), stan-
dard error of estimate (s) and variance ratio (F) at
specified degrees of freedom (df). All the accepted
equations have regression constants and F ratios sig-
nificant at the 95 and 99% levels respectively, if not
stated otherwise. A compound was considered as an
outlier if the residual is more than twice the standard
error of estimate for a particular equation. All the
developed models were cross-validated using ‘‘leave-one-
out’’ (LOO) technique. PRESS (LOO) statistics [36, 37]
were calculated using the programs KRPRES1 and
KRPRES2 [34], and LOO cross-validation R2 (Q2), pre-
dicted residual sum of squares (PRESS) were reported.
Some seleceted equations were also subjected to leave-
20%-out (L-20%-O) crossvalidation.

Results and discussion

Results from GFA-MLR

Results with ETA indices

Three best equations using ETA descriptors selected
from the population of generated equations based on the
values of R2 as well as Ra

2 and Q2 are given below:

logð1=LC50Þ ¼ �1:928þ 1:871ð�0:444Þ
X

a

� 0:137ð�0:040Þ
X

a
h i2

� 2:055ð�0:982Þ g0F
� �

OCH3

þ 0:621ð�0:494Þ g0F
� �

Cl
� 1:601ð�0:694Þ g0F

� �
OH

� 1:346ð�0:393Þ g0F
� �

COOH
� 1:860ð�1:482Þ g0F

� �
NH2

n ¼ 51; Q2 ¼ 0:847; R2
a ¼ 0:901; R2 ¼ 0:915;

R ¼ 0:956; s ¼ 0:183; F ¼ 65:841ðdf 7; 43Þ;
PRESS ¼ 2:563; ð9Þ

logð1=LC50Þ ¼ �1:954þ 2:019ð�0:464Þ
X

a

� 0:141ð�0:040Þ
X

a
h i2

� 0:052ð�0:054ÞNV

� 1:374ð�0:403Þ g0F
� �

COOH
� 1:750ð�0:690Þ g0F

� �
OH

� 2:119ð�1:006Þ g0F
� �

OCH3

� 1:951ð�1:521Þ g0F
� �

NH2

n ¼ 51; Q2 ¼ 0:848; R2
a ¼ 0:895; R2 ¼ 0:910;

R ¼ 0:954; s ¼ 0:188; F ¼ 61:894ðdf 7; 43Þ;

PRESS ¼ 2:544; ð10Þ

logð1=LC50Þ ¼ �1:437þ 1:684ð�0:451Þ
X

a

� 0:123ð�0:039Þ
X

a
h i2

þ 0:111ð�0:109Þ
X

a
h i

P

� 1:369ð�0:340Þ g0F
� �

COOH
� 1:767ð�0:578Þ g0F

� �
OH

� 2:102ð�0:847Þ g0F
� �

OCH3
� 1:999ð�1:276Þ g0F

� �
NH2

n ¼ 51; Q2 ¼ 0:846; R2
a ¼ 0:893; R2 ¼ 0:908;

R ¼ 0:953; s ¼ 0:189; F ¼ 60:7ðdf 7; 43Þ;

PRESS ¼ 2:579; ð11Þ

The 95% cofidence intervals are shown in parenthe-
ses. Among the above three equations, Eq. 9 was chosen
as the best based on statistical significance of the
regression coefficients and intercorrelation of predictor
variables.

The intercorrelation matrix among the predictor
variables (Eq. 9) is given in the Table 3. The predicted
variances of Eqs. 9, 10 and 11 ranges from 84.6 to
84.8% while the explained variance ranges from 89.3 to
90.1%. Equations 9, 10 and 11 show parabolic rela-
tions of the toxicity with

P
a, which indicates that the

toxicity increases with increase of size up to a certain
level, after which it decreases. The positive coefficient
of ½g0

F
�Cl indicates that the toxicity increases with the

increase of the functionality contribution of chloro
substituents. Again, the negative coefficients of ½g0F�COOH;
½g0F�OH; ½g0F�OCH3

and ½g0
F
�NH2

indicate negative contribu-
tions of functionalities like carboxy, hydroxy, methoxy
and amino groups.

Results with non-ETA indices

While working with non-ETA descriptors, three best
equations were selected from the population of gener-
ated models on the basis of the values of R2 as well as Ra

2

and Q2.

Table 2 Definitions of important ETA parameters used in explor-
ing QSAR of toxicity of benzene derivatives to R. japonica

Parameter Definition

P
a Sum of a values of all non-hydrogen

vertices of a molecule
[
P

a]P Sum of a values of all non-hydrogen
vertices each of which is joined
to only one other vertex
of the molecule

NV Vertex count (excluding hydrogen)
½g0F�OCH3

Functionality for the methoxy group
½g0F�Cl Functionality for the chloro group
½g0F�OH Functionality for the hydroxyl group
½g0F�COOH Functionality for the carboxyl group
½g0F�NH2

Functionality for the amino group
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logð1=LC50Þ ¼ 0:897þ 0:959ð�0:202Þ1vV

� 0:004ð�0:002ÞWiener� 0:672ð�0:189ÞS ddsN

� 0:012ð�0:012ÞS sOH� 0:110ð�0:060ÞS ssO

þ 0:024ð�0:014ÞS sCl;

n ¼ 51; Q2 ¼ 0:863; R2
a ¼ 0:884; R2 ¼ 0:898;

R ¼ 0:948; s ¼ 0:197; F ¼ 64:661ðdf 6; 44Þ;

PRESS ¼ 2:301; ð12Þ

logð1=LC50Þ ¼ 0:501þ 1:029ð�0:189Þ1vV

� 0:005ð�0:002ÞWienerþ 0:034ð�0:032ÞS aaCH

� 0:933ð�0:212ÞS ddsN� 0:102ð�0:060ÞS ssO

þ 0:031ð�0:016ÞS sCl,

n ¼ 51; Q2 ¼ 0:868; R2
a ¼ 0:884; R2 ¼ 0:898;

R ¼ 0:947; s ¼ 0:198; F ¼ 64:3401ðdf 6; 44Þ;

PRESS ¼ 2:209; ð13Þ

logð1=LC50Þ ¼ 0:937� 0:289ð�0:343Þ2ja

þ 1:139ð�0:230Þ1vV � 0:003ð�0:002ÞWiener

� 0:828ð�0:169ÞS ddsN� 0:089ð�0:066ÞS ssO

þ 0:033ð�0:016ÞS sCl

n ¼ 51;Q2 ¼ 0:863;R2
a ¼ 0:880;R2 ¼ 0:894;

R ¼ 0:946; s ¼ 0:201; F ¼ 61:896ðdf 6; 44Þ;

PRESS ¼ 2:303: ð14Þ

From these equations, Eq. 12 was chosen as the best
based on statistical significance of the regression coeffi-
cients and intercorrelation among predictor variables.

The intercorrelation (r) matrix among the predictor
variables (Eq. 12) is given in Table 3. The predicted
variance of Eqs. 12, 13 and 14 ranges from 86.3 to
86.8% and the explained variance ranges from 88.0 to
88.4%. Equations 12, 13 and 14 show the importance of
connectivity, kappa shape, E-state and Wiener indices
for the toxicity. When compared to Eqs. 9, 10 and 11,
Eqs. 12, 13 and 14 show lower explained variance values
and higher predicted variance values than those of the
former ones.

Results with ETA and non-ETA indices

While working with both ETA and non-ETA descrip-
tors, three best equations were selected from the popu-
lation of models generated with GFA. T
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logð1=LC50Þ ¼ �0:222þ 1:513ð�0:226Þ1vV

� 0:975ð�0:173ÞS ddsN� 0:126ð�0:060ÞS ssO

� 0:009ð�0:002ÞWiener� 0:139ð�0:070ÞS sBr,

n ¼ 51; Q2 ¼ 0:859; R2
a ¼ 0:881; R2 ¼ 0:893;

R ¼ 0:945; s ¼ 0:200; F ¼ 74:839ðdf 5; 45Þ;
PRESS ¼ 2:375; ð15Þ

logð1=LC50Þ ¼ 0:684þ 0:027ð�0:016ÞS sCl

� 0:785ð�0:165ÞS ddsNþ 1:034ð�0:197Þ1vV

� 0:112ð�0:062ÞS ssO� 0:005ð�0:002ÞWiener,

n ¼ 51; Q2 ¼ 0:858; R2
a ¼ 0:875; R2 ¼ 0:887;

R ¼ 0:942; s ¼ 0:205; F ¼ 70:803ðdf 5; 45Þ;
PRESS ¼ 2:377; ð16Þ

logð1=LC50Þ ¼ 0:685� 0:785ð�0:165ÞS ddsN

þ 1:033ð�0:197Þ1vV � 0:005ð�0:002ÞWiener

þ 0:027ð�0:016ÞS sCl� 1:956ð�1:104Þ½g0F�OCH3
;

n ¼ 51; Q2 ¼ 0:855; R2
a ¼ 0:874; R2 ¼ 0:886;

R ¼ 0:941; s ¼ 0:206; F ¼ 70:223ðdf 5; 45Þ;
PRESS ¼ 2:432: ð17Þ

From these equations, Eq. 15 was chosen as the best one
based on statistics of the regression coefficients and in-
tercorrelation of the predictor variables. The intercor-
relation matrix (Eq. 15) among the predictor variables is

given in Table 3. When Eq. 15 is compared to Eq. 9, it is
observed that there is marginal improvement in cross-
validation statistics on using non-ETA parameters with
ETA ones. This shows that the ETA parameters are
sufficiently rich in chemical information to encode the
structural features that contribute significantly to the
acute toxicity of the benzene derivatives to tadpoles (R.
japonica).

Results from FA-MLR

Results with ETA indices

Table 4 shows the results of factor analysis of the data
matrix composed of ETA descriptors. It is observed that
11 factors could explain 97.7% of the variance of the
data matrix. Based on the results of the factor analysis,
the following relationship was derived:

logð1=LC50Þ ¼ �1:477þ 1:648ð�0:556Þ
X

a

� 0:118ð�0:050Þ
X

a
h i2

þ 0:752ð�0:746Þ
X

a
h i

P
=
X

a� 1:557ð�0:715Þ g0F
� �

OH

� 1:324ð�0:431Þ g0F
� �

COOH
� 2:065ð�1:080Þ g0F

� �
OCH3

n ¼ 51; Q2 ¼ 0:852; R2
a ¼ 0:879; R2 ¼ 0:894;

R ¼ 0:945; s ¼ 0:201; F ¼ 61:760ðdf 6; 44Þ;
PRESS ¼ 2:491: ð18Þ

Table 4 Factor loadings of the variables (ETA parameters) after VARIMAX rotation (ETA matrix)

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9 Factor 10 Factor 11 Communalities

BA 0.554 0.152 0.472 �0.186 0.435 0.052 �0.280 �0.215 0.069 0.073 �0.041 0.916
g 0.166 �0.204 0.040 �0.095 0.055 0.036 �0.067 �0.059 �0.002 0.950 �0.024 0.996
gR 0.872 0.309 �0.014 0.133 �0.025 0.091 0.037 �0.016 �0.017 �0.232 0.043 0.940
NV 0.916 0.353 �0.030 0.125 �0.005 0.067 0.046 �0.006 �0.073 0.041 0.047 0.996
g
0

F 0.422 0.868 �0.017 0.094 �0.092 �0.024 0.112 �0.005 �0.110 �0.081 0.052 0.984
½g0F�Cl �0.154 �0.218 0.537 �0.644 0.217 �0.180 �0.138 �0.001 �0.210 0.185 �0.039 0.952
½g0F�Br 0.063 �0.098 0.350 �0.030 �0.023 �0.080 �0.071 �0.010 0.906 �0.004 �0.045 0.973
½g0F�OH �0.146 �0.140 �0.302 0.060 �0.899 0.067 �0.017 0.045 0.032 �0.052 �0.150 0.977
½g0F�NO2

0.178 0.874 0.172 0.250 0.206 0.092 �0.107 �0.073 0.003 �0.098 �0.034 0.965
½g0F�COOH 0.037 �0.119 0.064 �0.061 �0.006 �0.040 0.978 �0.032 �0.056 �0.061 �0.039 0.990
½g0F�NH2

0.089 0.011 0.016 0.064 0.107 �0.017 �0.039 �0.022 �0.036 �0.021 0.984 0.995
½g0F�CH3

0.051 �0.429 0.052 0.803 �0.019 0.088 �0.181 0.233 �0.149 �0.068 0.099 0.966
½g0F�OCH3

�0.093 �0.075 �0.124 0.123 �0.048 �0.019 �0.029 0.969 �0.007 �0.053 �0.027 0.992P
b¢s 0.198 0.875 0.157 �0.177 �0.066 �0.061 0.037 0.177 �0.198 �0.107 0.035 0.954P
b¢ns �0.133 0.825 �0.253 �0.234 0.145 �0.220 �0.184 �0.191 0.138 �0.030 �0.024 0.978P
b¢ �0.046 0.912 �0.153 �0.237 0.095 �0.192 �0.134 �0.097 0.050 �0.055 �0.008 0.992

S a 0.958 0.040 0.159 �0.086 0.130 �0.009 �0.003 �0.028 0.109 0.113 0.016 0.994
S a]P 0.283 �0.053 0.879 �0.103 0.205 0.016 0.021 �0.021 0.260 0.050 �0.017 0.979
[S a]Y 0.810 0.405 0.273 0.092 �0.117 �0.175 0.092 �0.073 �0.047 �0.013 0.161 0.989
[S a]X 0.082 �0.252 0.129 0.110 �0.046 0.930 �0.051 �0.020 �0.073 0.036 �0.023 0.976
[S a]P/S a �0.010 �0.114 0.945 �0.075 0.170 �0.002 0.015 �0.024 0.195 0.042 �0.006 0.982
[S a]Y/S a 0.416 0.561 0.347 0.227 �0.316 �0.249 0.156 �0.101 �0.197 �0.160 0.226 0.973
[S a]2 0.969 0.000 0.073 �0.076 0.099 �0.029 �0.022 �0.027 0.107 0.140 0.006 0.992
glocal 0.906 �0.318 �0.014 0.094 0.056 0.163 �0.007 �0.008 �0.050 0.125 �0.011 0.979
g¢B 0.087 0.300 0.820 0.221 �0.077 0.310 0.145 �0.158 �0.038 �0.097 0.096 0.986
Variance (%) 0.235 0.204 0.139 0.061 0.055 0.050 0.049 0.047 0.046 0.045 0.044 0.977
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The 95% confidence intervals are shown in paren-
theses.The positive coefficient of [S a]P/S a in Eq. 18
indicates that the toxicity increases on increase of
branching. Again, the parabolic relation of the toxicity
with S a indicates that the toxcity increases with increase
of size up to a certain level after which it decreases. The
negative coefficients of ½g’F�COOH; ½g’F�OH and ½g’F�OCH3

indicate the reduction of the toxicity in presence of
carboxy, hydroxy and methoxy groups.

Results with non-ETA indices

Based on the results (table not shown) of the factor
analysis of the matrix consisting of non-ETA descrip-
tors, the following equation was obtained:

logð1=LC50Þ ¼ 1:488þ 0:439ð�0:083Þ1v
þ 0:325ð�0:266ÞS dssC� 0:022ð�0:014ÞS sOH

� 0:131ð�0:077ÞS ssOþ 0:057ð�0:017ÞS sCl

þ 0:165ð�0:066ÞS sBr, n ¼ 51;

Q2 ¼ 0:782; R2
a ¼ 0:812; R2 ¼ 0:835; R ¼ 0:914;

s ¼ 0:251; F ¼ 37:048ðdf 6; 44Þ; PRESS ¼ 3:655:

ð19Þ

The explained variance (0.812) and predicted variance
(0.782) values of Eq. 19 are lower than those of Eq. 18
derived from ETA descriptors. Importance of E-state
terms (S_dssC, S_sOH, S_ssO, S_sCl and S_sBr) and
molecular connectivity parameter for the toxicity is rel-
evant from Eq. 19.

Results with ETA and non-ETA indices

When the data matrix composed of both ETA and non-
ETA parameters was considered, the following equation
(Eq. 20) was obtained as best model after factor analysis:

logð1=LC50Þ ¼ �1:530þ 1:627ð�0:524Þ
X

a

� 0:108ð�0:048Þ
X

a
h i2

� 0:029ð�0:012ÞS sOH

� 0:096ð�0:070ÞS ssOþ 0:019ð�0:014ÞS sCl,

n ¼ 51; Q2 ¼ 0:815; R2
a ¼ 0:843; R2 ¼ 0:859;

R ¼ 0:927; s ¼ 0:229; F ¼ 54:773ðdf 5; 45Þ;
PRESS ¼ 3:112: ð20Þ

Equation 20 is inferior to both Eqs. 18 and 19 with re-
spect to equation statistics; however, the crossvalidation
statistics of the former are better than those of Eq. 19.

Results from PCRA

Results with ETA indices

An attempt was also made to use factor scores, as the
predictor variables to avoid loss of information on

selection of relevant molecular descriptors from the set
of descriptors and a significant increase in statistical
quality was obtained.

logð1=LC50Þ ¼ 3:643þ 0:321ð�0:056Þf1
þ 0:088ð�0:056Þf2 þ 0:273ð�0:056Þf3
� 0:108ð�0:056Þf4 þ 0:252ð�0:056Þf5
� 0:162ð�0:056Þf7 � 0:125ð�0:056Þf8;

n ¼ 51; Q2 ¼ 864; R2
a ¼ 0:885; R2 ¼ 0:901;

R ¼ 0:949; s ¼ 0:196; F ¼ 56:065ðdf 7; 43Þ;
AVRES ¼ 0:163; PRESS ¼ 2:291;

SDEP ¼ 0:212; SPRESS ¼ 0:231;

Pr esav ¼ 0:137: ð21Þ

Equation 21 could predict and explain 86.4 and 88.5%
respectively, of the variance of the acute toxicity.

Results with non-ETA indices

When factor scores (derived from non-ETA matrix)
were used as predictor variables, a tangible rise in sta-
tistical quality was obtained with respect to Eq. 19.

logð1=LC50Þ ¼ 3:643þ 0:297ð�0:053Þf1
þ 0:336ð�0:053Þf2 � 0:098ð�0:053Þf3
þ 0:053ð�0:053Þf4 � 0:210ð�0:053Þf5
þ 0:112ð�0:053Þf6 þ 0:068ð�0:053Þf7
þ 0:095ð�0:053Þf9 þ 0:061ð�0:053Þf10
� 0:148ð�0:053Þf11;

n ¼ 51; Q2 ¼ 0:866; R2
a ¼ 0:903; R2 ¼ 0:922;

R ¼ 0:960; s ¼ 0:181; F ¼ 47:352ðdf 10; 40Þ;

AVRES ¼ 0:152; PRESS ¼ 2:243;

SDEP ¼ 0:210; SPRESS ¼ 0:237;

Pr esav ¼ 0:115: ð22Þ

Equation 22 based on the factor scores of the data
matrix of non-ETA variables is statistically comparable
to Eq. 21 based on the factor scores of the data matrix of
ETA variables. This shows that the matrix composed of
ETA descriptors is as rich in chemical information as the
matrix composed of different and diverse non-ETA de-
scriptors.

Results with ETA and non-ETA indices

Using factor scores derived from the combined matrix of
ETA and non-ETA descriptors as the predictor vari-
ables, the following equation was obtained:
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logð1=LC50Þ ¼ 3:643þ 0:338ð�0:058Þf1

þ 0:079ð�0:058Þf2 þ 0:272ð�0:058Þf3

þ 0:155ð�0:058Þf5 � 0:201ð�0:058Þf6

� 0:134ð�0:058Þf8 � 0:148ð�0:058Þf10;

n ¼ 51; Q2 ¼ 0:846; R2
a ¼ 0:872; R2 ¼ 0:890;

R ¼ 0:943; s ¼ 0:207; F ¼ 49:647ðdf 7;43Þ;

AVRES ¼ 0:176; PRESS ¼ 2:583;

SDEP ¼ 0:225; SPRESS ¼ 0:245; Pr esav ¼ 0:147: ð23Þ

Equation 23 shows inferior cross-validation statistics
than Eq. 21 derived from factor scores of the ETA
matrix.

Overview of the results

Based on cross-validation and equation statistics, Eqs. 9,
12 and 15 are the best ones obtained from ETA, non-
ETA and combined matrices, respectively. The calcu-
lated and predicted acute toxicity values according to
Eqs. 9, 12 and 15 are given in the Table 1. The inter-
correlation (r) among the predictor variables of different
equations is given in the Table 3. Selected equations
were also subjected to leave-20%-out (L-20%-O) cross-
validation and the results are shown in Table 5. For

Table 5 Results of leave-20%-out cross-validation applied on selected equations Model equation, pC=
P

b i xi +a

Name of
Statistical
Methods

Equation
number

Number of
cycles

Average regression
coefficients (SD)

Statistics Q2

(Average Pres)

GFA-MLR (9) 5a - 2.005(0.266) +1.901(0.127)
P

a� 0:140ð0:014Þ
hP

a
i2

þ0:628ð0:122Þ½g0F�Cl � 1:578ð0:147Þ½g0F�OH � 1:342ð0:122Þ½g0F�COOH

�1:854ð1:079Þ½g0F�NH2 � 2:056ð0:135Þ½g0F�OCH3

0.848

(0.168)

(12) 5a 0:894ð0:088Þ þ 0:961ð0:041Þ1vV � 0:004ð0:000ÞWiener

�0:672ð0:043ÞS ddsN� 1:263ð0:003ÞS sOH

�0:109ð0:025ÞS ssOþ 2:367ð0:004ÞS sCl

0.860

(0.173)

(15) 5a �0:231ð0:138Þ þ 1:517ð0:050Þ1vV
�0:982ð0:045ÞS ddsN� 0:124ð0:030ÞS ssO

�0:009ð0:000ÞWiener� 0:139ð0:016ÞS sBr

0.852

(0.175)

FA-MLR (18) 5a �1:539ð0:274Þ þ 1:671ð0:134ÞP
a� 0:120ð0:014Þ

P
a½ �2 þ 0:761ð0:163Þ

P
a½ �p=

P
a

�1:536ð0:130Þ½g0F�OH� 1:323ð0:136Þ½g0F�COOH � 2:064ð0:149Þ½g0F�OCH3

0.860

(0.164)

(19) 5a 1:475ð0:156Þ þ 0:442ð0:029Þ1vþ 0:322ð0:071ÞS dssC

�0:022ð0:005ÞS sOH� 0:130ð0:018ÞS ssO

þ0:057ð0:002ÞS sClþ 0:163ð0:012ÞS sBr

0.781

(0.204)

(20) 5a �1:551ð0:327Þ þ 1:637ð0:133Þ
P

a� 0:109ð0:014Þ
P

a½ �2
�0:096ð0:007ÞS ssO� 0:029ð0:005ÞS sOHþ 0:018ð0:003ÞS sCl

0.814

(0.184)

PCRA (21) 5a 3:643ð0:011Þ þ 0:320ð0:017Þf 1þ 0:089ð0:012Þf 2
þ0:272ð0:019Þf 3� 0:108ð0:009Þf 4
þ0:251ð0:014Þf 5� 0:162ð0:013Þf 7� 0:125ð0:009Þf 8

0.871

(0.159)

(22) 5a 3:646ð0:020Þ þ 0:300ð0:016Þf 1þ 0:335ð0:004Þf 2
�0:098ð0:005Þf 3þ 0:072ð0:052Þf 4
�0:210ð0:023Þf 5þ 0:110ð0:014Þf 6
þ0:069ð0:011Þf 7þ 0:092ð0:016Þf 9þ 0:065ð0:005Þf 10

0.839

(0.164)

(23) 5a 3:643ð0:018Þ þ 0:340ð0:021Þf 1þ 0:077ð0:007Þf 2
þ0:269ð0:006Þf 3þ 0:154ð0:009Þf 5
�0:202ð0:016Þf 6� 0:134ð0:014Þf 8� 0:148ð0:015Þf 10

0.857

(0.172)

Q2 denotes cross-validated R2

Average Pres means average of absolute values of predicted residuals
aCompounds were deleted in five cycles in the following manner: (1, 6, 11, 16, 21, 26,...,46, 51), (2, 7, 12, 17, 22,...,47),..., (5, 10, 15, 20, 25,

30,...,50)
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each equation, cross-validation was run in five cycles, in
each of which 20% of the compounds were deleted from
the original data set (vide footnote of Table 5) and the
rest of the compounds were taken as the training set.
Based on the equation developed from the reduced
dataset (training set), the toxicity values for the deleted
compounds (test set) were predicted and this procedure
was continued until each of the compounds of the ori-
ginal data set was deleted once in five cycles of cross-
validation. This is elaborated more in detail in Table 6
taking the example of leave-20%-out cross-validation
applied on Eq. 18. In each cycle, toxicity values of 20%
of the compounds were predicted based on the equation
derived from the remaining 80% of compounds and the
predictive r2 (r2 pred) value was calculated and reported.
In all cases, r2 pred values are found to be larger than 0.8.

The derived relations (Eqs. 9, 12, 15) from GFA are
of excellent statistical quality (predicted variance 0.847,
0.863 and 0.859 with R2 0.915, 0.898, 0.893 from ETA,
non-ETA and combined matrices, respectively), which
are comparable to those (predicted variance and R2 of
the best equation being 0.785 and 0.914, respectively) of
the previously reported equations obtained from step-
wise multiple regression analysis applied on the same
data set using physicochemical descriptors [27].

Conclusion

This study on the current dataset suggests that ETA
parameters are sufficiently rich in chemical information
to encode the structural features that contribute signifi-
cantly to the acute toxicity of benzene derivatives to
tadpoles (R. japonica) [27]. This indicates that ETA
indices merit further assessment to explore their poten-
tial in QSAR/QSPR/QSTR modeling.
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